Telegram Group & Telegram Channel
Как быть с категориальными предикторами при построении линейной регрессии?

Их, конечно, нужно привести к числовому виду. Как именно это сделать, нужно решать, исходя из вида категориальной переменной.

▫️ Номинальная.
У таких переменных нет естественного порядка, и они обычно представляют собой различные категории, такие как цвета, пол и т.д. Для кодирования номинальных переменных чаще всего используется метод one-hot кодирования. При этом каждая категория представляется отдельной бинарной переменной (столбцом), где 1 означает наличие этого признака, а 0 — его отсутствие.

▫️ Порядковая.
Такие переменные имеют естественный порядок, например, оценки уровня образования или уровни удовлетворённости. Для таких переменных можно использовать порядковое кодирование, где каждая категория получает числовое значение, отражающее её ранг. Например, «низкий», «средний» и «высокий» уровень удовлетворенности можно закодировать как 1, 2 и 3 соответственно.

#машинное_обучение



tg-me.com/ds_interview_lib/767
Create:
Last Update:

Как быть с категориальными предикторами при построении линейной регрессии?

Их, конечно, нужно привести к числовому виду. Как именно это сделать, нужно решать, исходя из вида категориальной переменной.

▫️ Номинальная.
У таких переменных нет естественного порядка, и они обычно представляют собой различные категории, такие как цвета, пол и т.д. Для кодирования номинальных переменных чаще всего используется метод one-hot кодирования. При этом каждая категория представляется отдельной бинарной переменной (столбцом), где 1 означает наличие этого признака, а 0 — его отсутствие.

▫️ Порядковая.
Такие переменные имеют естественный порядок, например, оценки уровня образования или уровни удовлетворённости. Для таких переменных можно использовать порядковое кодирование, где каждая категория получает числовое значение, отражающее её ранг. Например, «низкий», «средний» и «высокий» уровень удовлетворенности можно закодировать как 1, 2 и 3 соответственно.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/767

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA